1. L. Pauling, A. B. Robinson, R. Teranish, P. Cary, “Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography.”
Proc. Nat. Acad. Sci. USA.
68(10): 2374–2376 (1971).
2. M. Righettoni, A. Amann, S. E. Pratsinis, “Breath analysis by nanostructured metal oxides as chemoresistive gas sensors.”
Mater. Today.
18(3): 163–171 (2015).
3. J.-W. Yoon, J.-H. Lee, “Toward breath analysis on a chip for disease diagnosis using semiconductorbased chemiresistors: recent progress and future perspectives.”
Lab Chip.
17(21): 3537–3557 (2017).
4. C. Turner, P. Spanel, D. Smith, “A longitudinal study of ethanol and acetaldehyde in the exhaled breath of healthy volunteers using selected-ion flow-tube mass spectrometry.”
Rapid Commun. Mass Spectrom.
20(1): 61–68 (2006).
5. J.-S. Kim, J.-W. Yoon, Y. J. Hong, Y. C. Kang, F. Abdel-Hady, A. A. Wazzan, J.-H. Lee, “Highly sensitive and selective detection of ppb-level NO2 using multi-shelled WO3 yolk-shell spheres.”
Sens. Actuators B.
229, 561–569 (2016).
6. L. Wang, A. Teleki, S. E. Pratsinis, P. I. Gouma, “Ferroelectric WO3 nanoparticles for acetone selective detection.”
Chem. Mater.
20(15): 4794–4796 (2008).
7. M. Righettoni, A. Tricoli, S. E. Pratsinis, “Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis.”
Anal. Chem.
82(9): 3581–3587 (2010).
8. Y. H. Cho, Y. C. Kang, J.-H. Lee, “Highly selective and sensitive detection of trimethylamine using WO3 hollow spheres prepared by ultrasonic spray pyrolysis.”
Sens. Actuators B.
176, 971–977 (2013).
9. H.-Y. Li, L. Huang, X.-X. Wang, C.-S. Lee, J.-W. Yoon, J. Zhou, X. Guo, J.-H. Lee, “Molybdenum trioxide nanopaper as a dual gas sensor for detecting trimethylamine and hydrogen sulfide.”
RSC Adv.
7(7): 3680–3685 (2017).
10. A. T. Güntner, M. Righettoni, S. E. Pratsinis, “Selective sensing of NH3 by Si-doped α-MoO3 for breath analysis.”
Sens. Actuators B.
223, 266–273 (2016).
11. J.-W. Yoon, Y. J. Hong, Y. C. Kang, J.-H. Lee, “High performance chemiresistive H2 S sensors using Ag-loaded SnO2 yolk-shell nanostructures.”
RSC Adv.
4(31): 16067–16074 (2014).
12. X. Liang, T.-H. Kim, J.-W. Yoon, C.-H. Kwak, J.-H. Lee, “Ultrasensitive and ultraselective detection of H2 S using electrospun CuO-loaded In2 O3 nanofiber sensors assisted by pulse heating.”
Sens. Actuators B.
209, 934–943 (2015).
13. K.-I. Choi, H.-J. Kim, Y. C. Kang, J.-H. Lee, “Ultraselective and ultrasensitive detection of H2 S in highly humid atmosphere using CuO-loaded SnO2 hollow spheres for real-time diagnosis of halitosis.”
Sens. Actuators B.
194, 371–376 (2014).
14. K. H. Lee, B.-Y. Kim, J.-W. Yoon, J.-H. Lee, “Extremely selective detection of ppb levels of indoor xylene using CoCr2 O4 hollow spheres activated by Pt doping.”
Chem. Commun.
55(6): 751–754 (2019).
15. S.-Y. Jeong, J.-W. Yoon, T.-H. Kim, H.-M. Jeong, C.-S. Lee, Y. C. Kang, J.-H. Lee, “Ultra-selective detection of sub-ppm-level benzene using Pd-SnO2 yolk-shell micro-reactors with a catalytic Co3 O4 overlayer for monitoring air quality.”
J. Mater. Chem. A.
5(4): 1446–1454 (2017).
16. S.-H. Kim, H.-J. Yoon, “Use of the exhaled nitric oxide for management of asthma and respiratory disease.”
Korean J. Med.
74(6): 579–586 (2008).
17. S. A. Kharitonov, F. Gonio, C. Kelly, S. Meah, P. J. Barnes, “Reproducibility of exhaled nitric oxide measurements in healthy and asthmatic adults and children.”
Eur. Respir. J.
21(3): 433–438 (2003).
18. M. Machida, M. Uto, D. Kurogi, T. Kijima, “MnO x-CeO2 binary oxides for catalytic NO x sorption at low temperatures. Sorptive removal of NO x
.”
Chem. Mater.
12(10): 3158–3164 (2000).
19. H. G. Moon, Y. R. Choi, Y.-S. Shim, K.-I. Choi, J.-H. Lee, J.-S. Kim, S.-J. Yoon, H.-H. Park, C.-Y. Kang, H. W. Jang, “Extremely sensitive and selective NO probe based on villi-like WO3 nanostructures for application to exhaled breath analyzers.”
ACS Appl. Mater. Interface.
5(21): 10591–10596 (2013).
20. W.-T. Koo, S.-J. Choi, N.-H. Kim, J.-S. Jang, I.-D. Kim, “Catalyst-decorated hollow WO3 nanotubes using layer-by-layer self-assembly on polymeric nanofiber templates and their application in exhaled breath sensor.”
Sens. Actuators B.
223, 301–310 (2016).
21. C.-Y. Lee, S.-J. Kim, I.-S. Hwang, J.-H. Lee, “Glucose-mediated hydrothermal synthesis and gas sensing characteristics of WO3 hollow microspheres.”
Sens. Actuators B.
142(1): 236–242 (2009).
22. M. Penza, C. Martucci, G. Cassano, “NO x gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers.”
Sens. Actuators B.
50(1): 52–59 (1998).
23. O. E. Owen, V. E. Trapp, C. L. Skutches, M. A. Mozzoli, R. D. Hoeldtke, G. Boden, G. A. Reichard, “Acetone metabolism during diabetic ketoacidosis.”
Diabetes.
31(3): 242–248 (1982).
24. C. Deng, J. Zhang, X. Yu, W. Zhang, X. Zhang, “Determination of acetone in human breath by gas chromatography-mass spectrometry and solidphase microextraction with on-fiber derivatization.”
J. Chromatogr. B.
810(2): 269–275 (2004).
25. A. T. Güntner, N. A. Sievi, S. J. Theodore, T. Gulich, M. Kohler, S. E. Pratsinis, “Noninvasive body fat burn monitoring from exhaled acetone with Si-doped WO3-sensing nanoparticles.”
Anal. Chem.
89(19): 10578–10584 (2017).
26. J.-Y. Shen, M.-D. Wang, Y.-F. Wang, J.-Y. Hu, Y. Zhu, Y. X. Zhang, Z.-J. Li, H.-C. Yao, “Iron and carbon codoped WO3 with hierarchical walnut-like microstructure for highly sensitive and selective acetone sensor.”
Sens. Actuators B.
256, 27–37 (2018).
27. S.-J. Choi, I. Lee, B.-H. Jang, D.-Y. Youn, W.-H. Ryu, C. O. Park, I.-D. Kim, “Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath.”
Anal. Chem.
85(3): 1792–1796 (2013).
28. N.-H. Kim, S.-J. Choi, S.-J. Kim, H.-J. Cho, J.-S. Jang, W.-T. Koo, M. Kim, I.-D. Kim, “Highly sensitive and selective acetone sensing performance of WO3 nanofibers functionalized by Rh2 O3 nanoparticles.”
Sens. Actuators B.
224, 185–192 (2016).
29. S. T. Krishnan, J. P. Devadhasan, S. Kim, “Recent analytical approaches to detect exhaled breath ammonia with special reference to renal patients.”
Anal. Bioanal. Chem.
409(1): 21–31 (2017).
30. S. Davies, P. Spanel, D. Smith, “Quantitative analysis of ammonia on the breath of patients in end-stage renal failure.”
Kidney Int.
52(1): 223–228 (1997).
31. J. Obermeier, P. Trefz, J. Happ, J. K. Schubert, H. Staude, D.-C. Fischer, W. Miekisch, “Exhaled volatile substances mirror clinical conditions in pediatric chronic kidney disease.”
PLoS ONE.
12(6): e0178745(2017).
32. J. Faber Grabowska-Polanowska, M. Skowron, P. Miarka, A. Pietrzycka, I. Sliwka, A. Amann, “Detection of potential chronic kidney disease markers in breath using gas chromatography with massspectral detection coupled with thermal desorption method.”
J. Chromatogr. A.
1301(2): 179–189 (2013).
33. H.-S. Woo, C. W. Na, I.-D. Kim, J.-H. Lee, “Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO-Cr2 O3 hetero-nanostructures.”
Nanotechnology.
23(24): 245501(2012).
34. C.-H. Kwak, H.-S. Woo, J.-H. Lee, “Selective trimethylamine sensors using Cr2 O3-decorated SnO2 nanowires.”
Sens. Actuators B.
204, 231–238 (2014).
35. T.-H. Kim, J.-W. Yoon, Y. C. Kang, F. Abdel-Hady, A. A. Wazzan, J.-H. Lee, “A strategy for ultrasensitive and selective detection of methylamine using p-type Cr2 O3: Morphological design of sensing materials, control of charge carrier concentrations, and configurational tuning of Au catalysts.”
Sens. Actuators B.
240, 1049–1057 (2017).
36. S.-J. Lee, S.-T. Kim, H.-S. Kim, “A study on the measurement of halitosis of human mouth with chemical gas sensor arrays.”
J. Sens. Sci. Technol.
20(4): 279–285 (2011).
37. J. Chen, K. Wang, L. Hartmann, W. Zhou, “H2S detection by vertically aligned CuO nanowire array sensors.”
J. Phys. Chem. C.
112(41): 16017–16021 (2008).
38. H.-S. Woo, C.-H. Kwak, I.-D. Kim, J.-H. Lee, “Selective, sensitive, and reversible detection of H2 S using Mo-doped ZnO nanowire network sensors.”
J. Mater. Chem. A.
2(18): 6412–6418 (2014).
39. Y. Wang, Y. Wang, J. Cao, F. Kong, H. Xia, J. Zhang, B. Zhu, S. Wang, S. Wu, “Low-temperature H2 S sensors based on Ag-doped α-Fe2 O3 nanoparticles.”
Sens. Actuators B.
131(1): 183–189 (2008).
40. X. Chen, M. Cao, Y. Li, W. Hu, P. Wang, K. Ying, H. Pan, “A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method.”
Meas. Sci. Technol.
16(8): 1535–1546.
41. M. Iwamoto, Y. Yoda, N. Yamazoe, T. Seiyama, “Study of metal oxide catalysts by temperature programmed desorption. 4. Oxygen adsoption on various metal oxides.”
J. Phys. Chem.
82(24): 2564–2570 (1978).
42. H.-J. Kim, J.-H. Lee, “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview.”
Sens. Actuators B.
192, 607–627 (2014).
43. J.-W. Yoon, Y. J. Hong, G. D. Park, S.-J. Hwang, F. Abdel-Hady, A. A. Wazzan, Y. C. Kang, J.-H. Lee, “Kilogram-scale synthesis of Pd-loaded quintuple-shelled Co3 O4 microreactors and their application to ultrasensitive and ultraselective detection of methylbenzenes.”
ACS Appl. Mater. Interfaces.
7(14): 7717–7723 (2015).
44. S.-J. Hwang, K.-I. Choi, J.-W. Yoon, Y. C. Kang, J.-H. Lee, “Pure and palladium-loaded Co3 O4 hollow hierarchical nanostructures with giant and ultraselective chemiresistivity to xylene and toluene.”
Chem. Eur. –J.
21(15): 5872–5878 (2015).
45. N. J. Pineau, J. F. Kompalla, A. T. Güntner, S. E. Pratsinis, “Orthogonal gas sensor arrays by chemoresistive material design.”
Microchim. Acta.
185, 563(2018).