1. B. W. An, J. H. Shin, S.-Y. Kim, J. Kim, S. Ji, J. Park, Y. Lee, J. Jang, Y.-G. Park, E. Cho, “Smart Sensor Systems for Wearable Electronic Devices.”
Polymers.
9, 303(2017).
2. A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, S. Bhansali, “Organic-inorganic hybrid nanocomposite–based gas sensors for environmental monitoring.”
Chem. Rev..
115, 4571–4606 (2015).
3. L. Y. Chen, B. C.–K. Tee, A. L. Chortos, G. Schwartz, V. Tse, D. J. Lipomi, H.–S. P. Wong, M. V. McConnell, M. V. McConnell, Z. Bao, “Continuous wireless pressure monitoring and mapping with ultra–small passive sensors for health monitoring and critical care.”
Nat. Commun..
5, 5028(2014).
4. M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, E. Diller, “Biomedical applications of untethered mobile milli/microrobots.”
Proc. IEEE..
103, 205–205 (2015).
5. Z. L. Wang, W. Wu, “Nanotechnology– enabled energy harvesting for self–powered micro–/nanosystems.”
Angew. Chem..
51, 11700–11700 (2012).
6. Z. L. Wang, J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays.”
Science..
312, 242–242 (2006).
7. V. Nguyen, R. Zhu, R. Yang, “Environmental effects on nanogenerators.”
Nano Energy..
14, 49–49 (2015).
8. K. Y. Lee, D. Kim, J. H. Lee, T. Y. Kim, M. K. Gupta, S. W. Kim, “Unidirectional High– Power Generation via Stress–Induced Dipole Alignment from ZnSnO3 Nanocubes/Polymer Hybrid Piezoelectric Nanogenerator.”
Adv. Func. Mater..
24, 37–37 (2014).
9. J.–H. Lee, K. Y. Lee, B. Kumar, N. T. Tien, N.–E. Lee, S.–W. Kim, “Highly sensitive stretchable transparent piezoelectric nanogenerators.”
Energy Environ. Sci..
6, 175–175 (2013).
10. J. H. Lee, H. Ryu, T. Y. Kim, S. S. Kwak, H. J. Yoon, T. H. Kim, W. Seung, S. W. Kim, “Thermally Induced Strain–Coupled Highly Stretchable and Sensitive Pyroelectric Nanogenerators.”
Adv. Energy. Mater..
5, (2015).
11. J. H. Lee, K. Y. Lee, M. K. Gupta, T. Y. Kim, D. Y. Lee, J. Oh, C. Ryu, W. J. Yoo, C. Y. Kang, S. J. Yoon, “Highly stretchable piezoelectric–pyroelectric hybrid nanogenerator.”
Adv. Mater..
26, 765–769 (2014).
12. K. Y. Lee, S. K. Kim, J. H. Lee, D. Seol, M. K. Gupta, Y. Kim, S. W. Kim, “Controllable charge transfer by ferroelectric polarization mediated triboelectricity.”
Adv. Func. Mater..
26, 3067–3073 (2016).
13. J. H. Lee, R. Hinchet, S. K. Kim, S. Kim, S.-W. Kim, “Shape memory polymer-based self-healing triboelectric nanogenerator.”
Energy Environ. Sci..
8, 3605–3613 (2015).
14. W. Seung, M. K. Gupta, K. Y. Lee, K.-S. Shin, J.-H. Lee, T. Y. Kim, S. Kim, J. Lin, J. H. Kim, S.-W. Kim, “Nanopatterned textile-based wearable triboelectric nanogenerator.”
ACS Nano..
9, 3501–3509 (2015).
15. X. Yang, W. A. Daoud, “Triboelectric and Piezoelectric Effects in a Combined Tribo-Piezoelectric Nanogenerator Based on an Interfacial ZnO Nanostructure.”
Adv. Func. Mater..
26, 8194–8201 (2016).
16. Y. Yang, et al, “Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.”
ACS Nano.
7, 785–790 (2012).
17. F. R. Fan, W. Tang, Z. L. Wang, “Flexible nanogenerators for energy harvesting and self-powered electronics.”
Adv. Mater..
28, 4283–4305 (2016).
18. J.-H. Lee, J. Kim, T. Y. Kim, M. S. Al Hossain, S.-W. Kim, J. H. Kim, “All-in-one energy harvesting and storage devices.”
J. Mater. Chem. A..
4, 7983–7999 (2016).
19. Q. Zheng, B. Shi, Z. Li, Z. L. Wang, “Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems.”
Adv. Sci..
4, 1700029(2017).
20. Z. L. Wang, G. Zhu, Y. Yang, S. Wang, C. Pan, “Progress in nanogenerators for portable electronics.”
Materials Today.
15, 532–543 (2012).
21. J. Lowell, A. Rose-Innes, “Contact electrification.”
Adv. Phys..
29, 947–1023 (1980).
22. G. Castle, “Contact charging between insulators.”
J. Electrostat..
40, 13–20 (1997).
23. R. Yang, Y. Qin, L. Dai, Z. L. Wang, “Power generation with laterally packaged piezoelectric fine wires.”
Nat. Nanotechnol..
4, 34(2009).
24. X. Wang, B. Yang, J. Liu, Y. Zhu, C. Yang, Q. He, “A flexible triboelectric-piezoelectric hybrid nanogenerator based on P (VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices.”
Sci. Rep..
6, 36409(2016).
25. S. Roundy, E. Takahashi, “A planar electromagnetic energy harvesting transducer using a multi-pole magnetic plate.”
Actuator A Phys..
195, 98–104 (2013).
26. L. Gu, N. Cui, L. Cheng, Q. Xu, S. Bai, M. Yuan, W. Wu, J. Liu, Y. Zhao, F. Ma, “Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode.”
Nano. lett..
13, 91–94 (2012).
27. G. Zhu, A. C. Wang, Y. Liu, Y. Zhou, Z. L. Wang, “Functional electrical stimulation by nanogenerator with 58 V output voltage.”
Nano. lett..
12, 3086–3090 (2012).
28. W.-S. Jung, M.-G. Kang, H. G. Moon, S.-H. Baek, S.-J. Yoon, Z.-L. Wang, S.-W. Kim, C.-Y. Kang, “High output piezo/triboelectric hybrid generator.”
Sci. Rep..
5, 9309(2015).
29. H. Van Ngoc, D. J. Kang, “Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes.”
Nanoscale.
8, 5059–5066 (2016).
30. Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X. Fan, P. K. Yang, F. Yi, Z. L. Wang, “Triboelectric – Pyroelectric – Piezoelectric Hybrid Cell for High-Efficiency Energy-Harvesting and Self-Powered Sensing.”
Adv. Mater..
27, 2340–2347 (2015).
31. M. Han, X.-S. Zhang, B. Meng, W. Liu, W. Tang, X. Sun, W. Wang, H. Zhang, “r-Shaped hybrid nanogenerator with enhanced piezoelectricity.”
ACS Nano..
7, 8554–8560 (2013).
32. X. Chen, M. Han, H. Chen, X. Cheng, Y. Song, Z. Su, Y. Jiang, H. Zhang, “A wave–shaped hybrid piezoelectric and triboelectric nanogenerator based on P (VDF– TrFE) nanofibers.”
Nanoscale.
9, 1263–1263 (2017).
33. G. Suo, Y. Yu, Z. Zhang, S. Wang, P. Zhao, J. Li, X. Wang, “Piezoelectric and triboelectric dual effects in mechanical–energy harvesting using BaTiO3/polydimethylsiloxane composite film.”
ACS Appl. Mater. Interfaces.
8, 34335–34335 (2016).
34. C. Xu, X. Wang, Z. L. Wang, “Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies.”
J. Amer. Chem. Soc..
131, 5866–5866 (2009).
35. P. Li, S. Gao, H. Cai, L. Wu, “Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester.”
Micro. syst. Technol..
22, 727–727 (2016).
36. X. Wu, A. Khaligh, Y. Xu, “Modeling, design and optimization of hybrid electromagnetic and piezoelectric MEMS energy scavengers.” In: Paper presented in IEEE Custom Integrated Circuits Conference in San Jose, CA, USA (177–80); 2008.
37. J. He, T. Wen, S. Qian, Z. Zhang, Z. Tian, J. Zhu, J. Mu, X. Hou, W. Geng, J. Cho, “Triboelectric–piezoelectric–electromagnetic hybrid nanogenerator for high–efficient vibration energy harvesting and self–powered wireless monitoring system.”
Nano Energy..
43, 326–326 (2017).
38. B. P. Nabar, Z. Celik–Butler, D. P. Butler, “Piezoelectric ZnO nanorod carpet as a NEMS vibrational energy harvester.”
Nano Energy..
10, 71–71 (2014).
39. H. Liu, C. J. Tay, C. Quan, T. Kobayashi, C. Lee, “Piezoelectric MEMS energy harvester for low–frequency vibrations with wideband operation range and steadily increased output power.”
J. Micro Electromech. S..
20, 1142–1142 (2011).
40. B. Yang, C. Lee, R. K. Kotlanka, J. Xie, S. P. Lim, “A MEMS rotary comb mechanism for harvesting the kinetic energy of planar vibrations.”
J. Micromech. Microeng..
20, 065017(2010).
41. W. Ma, R. Zhu, L. Rufer, Y. Zohar, M. Wong, “An integrated floating–electrode electric microgenerator.”
J. Micro Electro Mech. Syst..
16, 29–29 (2007).
42. Q. Yuan, X. Sun, D.–M. Fang, H. Zhang, “Design and microfabrication of integrated magnetic MEMS energy harvester for low frequency application.” In: Paper presented in 16th International Conference on Solid–State Sensors, Actuators and Microsystems in Bijing China, IEEE 2; pp 1855–1855 2011.
43. T. Galchev, H. Kim, K. Najafi, “Micro power generator for harvesting low–frequency and nonperiodic vibrations.”
J. Micro Electro Mech. Syst..
20, 852–852 (2011).
44. S. P. Beeby, M. J. Tudor, N. White, “Energy harvesting vibration sources for microsystems applications.”
Meas. Sci. Technol..
17, R175–R175 (2006).
45. S. Roundy, P. K. Wright, J. Rabaey, “A study of low level vibrations as a power source for wireless sensor nodes.”
Comp. Commun..
26, 1131–1131.
46. J. Briscoe, S. Dunn, “Piezoelectric nanogenerators-a review of nanostructured piezoelectric energy harvesters.”
Nano Energy..
14, 15–15 (2015).
47. Y. Hu, Z. L. Wang, “Recent progress in piezoelectric nanogenerators as a sustainable power source in self–powered systems and active sensors.”
Nano Energy..
14, 3–3 (2015).
48. I. Dakua, N. Afzulpurkar, “Piezoelectric energy generation and harvesting at the nano–scale: materials and devices.”
Nanomater. Nanotechnol..
3, 21(2013).
49. Z. Lin, J. Chen, J. Yang, “Recent progress in triboelectric nanogenerators as a renewable and sustainable power source.”
J. Nanomater.. (2016).
50. Z. L. Wang, J. Chen, L. Lin, “Progress in triboelectric nanogenerators as a new energy technology and self–powered sensors.”
Energy Environ. Sci..
8, 2250–2250 (2015).
51. Z. Gao, J. Zhou, Y. Gu, P. Fei, Y. Hao, G. Bao, Z. L. Wang, “Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor.”
J. Appl. Phys..
105(11): 113707(2009).
52. Z. L. Wang, “Energy Harvesting Using Piezoelectric Nanowires – A Correspondence on “Energy Harvesting Using Nanowires?.” by Alexe et al,”.
Adv. Mater..
21, 1311–1315 (2009).
53. Z. L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. Hu, S. Xu, “Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics.”
Mater. Sci. Eng. R Rep..
70, 320–329 (2010).
54. K. Y. Lee, M. K. Gupta, S.-W. Kim, “Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics.”
Nano Energy..
14, 139–160 (2015).
55. E. Nour, O. Nur, M. Willander, “Zinc oxide piezoelectric nano-generators for low frequency applications.”
Semicond. Sci. Technol..
32, 064005(2017).
56. K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J. L. Kang, Z. L. Wang, K. J. Lee, “Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates.”
Nano. Lette..
10, 4939–4943 (2010).
57. Z.-H. Lin, Y. Yang, J. M. Wu, Y. Liu, zF. Zhang, Z. L. Wang, “BaTiO3 nanotubes-based flexible and transparent nanogenerators.”
J. Phys. Chem. Lett..
3, 3599–3604 (2012).
58. K. I. Park, M. Lee, Y. Liu, S. Moon, G. T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang, “Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons.”
Adv. Mater..
24, 2999–3004 (2012).
59. S. Gupta, A. Tanwar, R. Mukhiya, S. S. Kumar, “Design and Simulations of ZnO-based Piezoelectric Energy Harvester.” In: Paper presented in ISSS International Conference on Smart Materials, Structures and Systems in Bangalore, India; 5–7 July 2017.
60. Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu, Z. L. Wang, “Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators.”
J. Mater. Chem..
19, 9260–9264 (2009).
61. Y. Qiu, H. Zhang, L. Hu, D. Yang, L. Wang, B. Wang, J. Ji, G. Liu, X. Liu, J. Lin, “Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates.”
Nanoscale.
4, 6568–6573 (2012).
62. S. Xu, B. J. Hansen, Z. L. Wang, “Piezoelectric-nanowire-enabled power source for driving wireless microelectronics.”
Nat. Commun..
1, 93(2010).
63. J. Kwon, W. Seung, B. K. Sharma, S.-W. Kim, J.-H. Ahn, “A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes.”
Energy Environ. Sci..
5, 8970–8975 (2012).
64. C. Dagdeviren, B. D. Yang, Y. Su, P. L. Tran, P. Joe, E. Anderson, J. Xia, V. Doraiswamy, B. Dehdashti, X. Feng, “Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm.”
Proc. Natl. Acad. Sci..
111, 1927–1932 (2014).
65. C. Chang, V. H. Tran, J. Wang, Y.-K. Fuh, L. Lin, “Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency.”
Nano. Lett..
10, 731–731 (2010).
66. B. J. Hansen, Y. Liu, R. Yang, Z. L. Wang, “Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy.”
ACS Nano..
4, 3647–3652 (2010).
67. L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, J. A. Rogers, “High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene).”
Nat. Commun..
4, 1633(2013).
68. X. Chen, H. Tian, X. Li, J. Shao, Y. Ding, N. An, Y. Zhou, “A high performance P (VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling.”
Nanoscale.
7, 11536–11544 (2015).
69. S. Cha, S. M. Kim, H. Kim, J. Ku, J. I. Sohn, Y. J. Park, B. G. Song, M. H. Jung, E. K. Lee, B. L. Choi, “Porous PVDF as effective sonic wave driven nanogenerators.”
Nano. Lett..
11, 5142–5147 (2011).
70. Y. Mao, P. Zhao, G. McConohy, H. Yang, Y. Tong, X. Wang, “Sponge-Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self-Powered Electronic Systems.”
Adv. Energy. Mater..
4, (2014).
71. B. Kumar, S.-W. Kim, “Recent advances in power generation through piezoelectric nanogenerators.”
J. Mater. Chem..
21, 18946–18958 (2011).
72. T. Bateman, “Elastic moduli of single-crystal zinc oxide.”
J. Appl. Phys..
33, 3309–3312 (1962).
73. P. Gopal, N. A. Spaldin, “Polarization, piezoelectric constants, and elastic constants of ZnO, MgO, and CdO.”
J. Electron Mater..
35, 538–542 (2006).
74. R. F. PierretSemiconductor device fundamentals. 2nd edn. Addison Wesley; India: 1996. p. 470–90.
75. W. Park, G.-C. Yi, J.-W. Kim, S.-M. Park, “Schottky nanocontacts on ZnO nanorod arrays.”
Appl. Phys. Lett..
82, 4358–4360 (2003).
76. R. Yang, Y. Qin, C. Li, G. Zhu, Z. L. Wang, “Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator.”
Nano. Lett..
9, 1201–1205 (2009).
77. M. Lee, J. Bae, J. Lee, C.-S. Lee, S. Hong, Z. L. Wang, “Self-powered environmental sensor system driven by nanogenerators.”
Energy. Environ. Sci..
4, 3359–3359 (2011).
78. K. H. Kim, K. Y. Lee, J. S. Seo, B. Kumar, S. W. Kim, “Paper-based piezoelectric nanogenerators with high thermal stability.”
Small..
7, 2577–2580 (2011).
79. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks.”
Science..
294, 1313–1317 (2001).
80. Z. Shao, X. Zhang, X. Wang, S. Chang, “Electrical characteristics of Pt-ZnO Schottky nano-contact.”
Sci China Phys Mech..
53, 64–67 (2010).
81. J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, Z. L. Wang, “Carrier density and Schottky barrier on the performance of DC nanogenerator.”
Nano. Lett..
8, 328–332 (2008).
82. D. Davies, “Harmful effects and damage to electronics by electrostatic discharges.”
J. Electrostat..
16, 329–342 (1985).
83. F.-R. Fan, Z.-Q. Tian, Z. L. Wang, “Flexible triboelectric generator.”
Nano Energy..
1, 328–334 (2012).
84. P. Shaw, “Experiments on tribo-electricity. I.–The tribo-electric series.”
Proc. R. Soc. Lond. A..
94, 16–33 (1917).
85. Z. L. Wang, “Towards self-powered nanosystems: from nanogenerators to nanopiezotronics.”
Adv. Func. Mater..
18, 3553–3567 (2008).
86. L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, Z. L. Wang, “Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy.”
Nano. Lett..
13, 2916–2923 (2013).
87. D. Kim, Y. Oh, B.-W. Hwang, S.-B. Jeon, S.-J. Park, Y.-K. Choi, “Triboelectric nanogenerator based on the internal motion of powder with a package structure design.”
ACS Nano.
10, 1017–1024 (2015).
88. B. Meng, W. Tang, Z.-h. Too, X. Zhang, M. Han, W. Liu, H. Zhang, “A transparent single-friction-surface triboelectric generator and self-powered touch sensor.”
Energy Environ. Sci..
6, 3235–3240 (2013).
89. S. Wang, L. Lin, Z.L. Wang, “Triboelectric nanogenerators as self-powered active sensors.”
Nano Energy..
11, 436–462 (2015).
90. Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, Z. L. Wang, “Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator.”
ACS Nano..
10, 4797–4805 (2016).
91. Z. L. Wang, L. Lin, J. Chen, S. Niu, Y. Zi“Triboelectric Nanogenerator: Vertical Contact–Separation Mode.”; in
Triboelectric Nanogenerators. Springer; New York: 2016. p. 23–47 2016.
92. S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim, K. S. Shin, D. Kim, S. K. Kim, K. H. Lee, H. J. Shin, “Transparent flexible graphene triboelectric nanogenerators.”
Adv. Mater..
26, 3918–3918 (2014).
93. L. Dhakar, F. E. H. Tay, C. Lee, “Development of a broadband triboelectric energy harvester with SU–8 micropillars.”
J. Micro Electro Mech. Syst.
24, 91–91 (2015).
94. M. Dresselhaus, I. Thomas, “Alternative energy technologies.”
Nature..
414, 332–332 (2001).
95. Q. Zhang, C. S. Dandeneau, X. Zhou, G. Cao, “ZnO Nanostructures for Dye–Sensitized Solar Cells.”
Adv. Mater..
21, 4087–4087 (2009).
96. F. J. DiSalvo, “Thermoelectric cooling and power generation.”
Science..
285, 703–703 (1999).
97. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, “High–thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.”
Science..
320, 634–634 (2008).
98. N. R. Alluri, A. Chandrasekhar, S.–J. Kim, “Exalted Electric Output via Piezo– Triboelectric Coupling/Sustainable Butterfly Wing Structure Type Multiunit Hybrid Nanogenerator.”
ACS Sustain. Chem. Eng..
6, 1919–1919 (2018).
99. M. Lee, R. Yang, C. Li, Z. L. Wang, “Nanowire– Quantum Dot Hybridized Cell for Harvesting Sound and Solar Energies.”
The J. Phys. Chem. Lett..
1, 2929–2929 (2010).
100. M. Han, X. Zhang, W. Liu, X. Sun, X. Peng, H. Zhang, “Low–frequency wide–band hybrid energy harvester based on piezoelectric and triboelectric mechanism.”
Sci. China. Technol. Sci..
56, 1835–1835 (2013).
101. Xu Chen, Zhong Lin Wang, “Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy.”
Adv. Mater..
23, 873–873 (2011).
102. C. Pan, W. Guo, L. Dong, G. Zhu, Z. L. Wang, “Optical Fiber–Based Core-Shell Coaxially Structured Hybrid Cells for Self– Powered Nanosystems.”
Adv. Mater..
24, 3356–3356 (2012).
103. D.–Y. Lee, H. Kim, H.–M. Li, A.–R. Jang, Y.–D. Lim, S. N. Cha, Y. J. Park, D. J. Kang, W. J. Yoo, “Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator.”
Nanotechnology..
24, 175402(2013).
104. Y. Yang, H. Zhang, Z.–H. Lin, Y. Liu, J. Chen, Z. Lin, Y. S. Zhou, C. P. Wong, Z. L. Wang, “A hybrid energy cell for self– powered water splitting.”
Energy Environ. Sci..
6, 2429–2429 (2013).
105. Y. Yang, H. Zhang, Y. Liu, Z.–H. Lin, S. Lee, Z. Lin, C. P. Wong, Z. L. Wang, “Silicon–based hybrid energy cell for self– powered electrodegradation and personal electronics.”
ACS Nano..
7, 2808–2808 (2013).
106. S.–B. Jeon, D. Kim, G.–W. Yoon, J.–B. Yoon, Y.–K. Choi, “Self–cleaning hybrid energy harvester to generate power from raindrop and sunlight.”
Nano Energy..
12, 636–636 (2015).
107. L. Zheng, G. Cheng, J. Chen, L. Lin, J. Wang, Y. Liu, H. Li, Z. L. Wang, “A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock.”
Adv. Energy. Mater..
5, 1501152(2015).
108. Y. Fang, J. Tong, Q. Zhong, Q. Chen, J. Zhou, Q. Luo, Y. Zhou, Z. Wang, B. Hu, “Solution processed flexible hybrid cell for concurrently scavenging solar and mechanical energies.”
Nano Energy..
16, 301–301 (2015).
109. H. Guo, Z. Wen, Y. Zi, M. H. Yeh, J. Wang, L. Zhu, C. Hu, Z. L. Wang, “A Water– Proof Triboelectric – Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments.”
Adv. Energy. Mater..
6, (2016).
110. H. Zhong, Z. Wu, X. Li, W. Xu, S. Xu, S. Zhang, Z. Xu, H. Chen, S. Lin, “Graphene based two dimensional hybrid nanogenerator for concurrently harvesting energy from sunlight and water flow.”
Carbon..
105, 199–204 (2016).
111. N.A.A. Semsudin, et al, “Integrated hybrid micro energy harvester based on thermal and vibration using op-amp for biomedical devices.”
Asian J. Sci. Res..
10, 34–42 (2017).
112. C. Jiang, et al, “Enhanced Solar Cell Conversion Efficiency of InGaN/GaN Multiple Quantum Wells by Piezo-Phototronic Effect.”
ACS Nano..
11, 9405–9412 (2017).
113. M.-H. You, et al, “Self-Powered Flexible Hybrid Piezoelectric – Pyroelectric Nanogenerator based on Non-woven Nanofiber Membranes.”
J. Mater. Chem. A..
6, 3500–3509 (2018).
114. V. Vivekananthan, et al, “A sliding mode contact electrification based triboelectric-electromagnetic hybrid generator for small-scale biomechanical energy harvesting.”
Micro and Nano Syst Lett..
7, 1–8 (2019).
115. H. Kim, S. Priya, H. Stephanou, K. Uchino, “Consideration of impedance matching techniques for efficient piezoelectric energy harvesting.”
IEEE transactions on ultrasonics, IEEE. T. Ultrason. Ferr..
54, (2007).
116. J. Briscoe, N. Jalali, P. Woolliams, M. Stewart, P. M. Weaver, M. Cain, S. Dunn, “Measurement techniques for piezoelectric nanogenerators.”
Energy Environ. Sci..
6, 3035–3045 (2013).
117. S. Niu, Y. S. Zhou, S. Wang, Y. Liu, L. Lin, Y. Bando, Z. L. Wang, “Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system.”
Nano Energy..
8, 150–150 (2014).
118. C. Zhang, W. Tang, C. Han, F. Fan, Z. L. Wang, “Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy.”
Adv. Mater..
26, 3580–3591 (2014).
119. H. Yamazaki, T. Kitayama, “Pyroelectric properties of polymer – ferroelectric composites.”
Ferroelectrics..
33, 147–153 (1981).
120. Q. Leng, L. Chen, H. Guo, J. Liu, G. Liu, C. Hu, Y. Xi, “Harvesting heat energy from hot/cold water with a pyroelectric generator.”
J. Mater. Chem. A..
2, 11940–11947 (2014).
121. D. Zhu, M. J. Tudor, S. P. Beeby, “Strategies for increasing the operating frequency range of vibration energy harvesters: a review.”
Meas Sci. Technol..
21, 022001(2009).
122. X. Wang, S. Niu, F. Yi, Y. Yin, C. Hao, K. Dai, Y. Zhang, Z. You, Z. L. Wang, “Harvesting ambient vibration energy over a wide frequency range for self-powered electronics.”
ACS Nano..
11, 1728–1735 (2017).
123. S. Chen, X. Tao, W. Zeng, B. Yang, S. Shang, “Quantifying Energy Harvested from Contact-Mode Hybrid Nanogenerators with Cascaded Piezoelectric and Triboelectric Units.”
Adv. Energy. Mater..
7, (2017).
124. X. Wang, et al, “Flexible triboelectric and piezoelectric coupling nanogenerator based on electrospinning P(VDF-TRFE) nanowires.” In: Paper presented in 28th International Conference on Micro Electro Mechanical Systems in Estoril; Portugal. IEEE (110–13). 2015.
125. Y. Yang, H. Zhang, S. Lee, D. Kim, W. Hwang, Z. L. Wang, “Hybrid energy cell for degradation of methyl orange by self-powered electrocatalytic oxidation.”
Nano Lett..
13, 803–808 (2013).
126. L. S. McCarty, G. M. Whitesides, “Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets.”
Angew. Chem..
47, 2188–2207 (2008).
127. M. Han, X. Chen, B. Yu, H. Zhang, “Coupling of piezoelectric and triboelectric effects: From theoretical analysis to experimental verification.”
Adv. Electron. Mater..
1, (2015).
128. J. Zhu, X. Hou, X. Niu, X. Guo, J. Zhang, J. He, T. Guo, X. Chou, C. Xue, W. Zhang, “The d-arched piezoelectric-triboelectric hybrid nanogenerator as a self–powered vibration sensor.”
Sens. Actuators A. Phys..
263, 317–317 (2017).
129. Y. Wu, et al, “Flexible composite–nanofiber based piezo–triboelectric nanogenerators for wearable electronics.”
J. Mater. Chem. A..
7, 13347–13347 (2019).
130. M. Li, et al, “All–in–one cellulose based hybrid tribo/piezoelectric nanogenerator.”
Nano. Res..
12, 1831–1831 (2019).
131. L. Lapcinskis, et al, “Hybrid Tribo–Piezo– Electric Nanogenerator with Unprecedented Performance Based on Ferroelectric Composite Contacting Layers.”
ACS Appl. Energy Mater..
2, 4027–4027 (2019).
132. J. Chung, et al, “Hand–Driven Gyroscopic Hybrid Nanogenerator for Recharging Portable Devices.”
Adv. Sci..
5, 1801054(2018).
133. H. Kim, S. M. Kim, H. Son, H. Kim, B. Park, J. Ku, J. I. Sohn, K. Im, J. E. Jang, J.–J. Park, “Enhancement of piezoelectricity via electrostatic effects on a textile platform.”
Energy Environ. Sci..
5, 8932–8932 (2012).
134. C. Xue, J. Li, Q. Zhang, Z. Zhang, Z. Hai, L. Gao, R. Feng, J. Tang, J. Liu, W. Zhang, “A novel arch–shape nanogenerator based on piezoelectric and triboelectric mechanism for mechanical energy harvesting.”
Nanomaterials..
5, 36–36 (2014).
135. Q. Nguyen, B. H. Kim, J. W. Kwon, “Paper–based ZnO nanogenerator using contact electrification and piezoelectric effects.”
Journal of Microelectromechanical Systems.
24, 519–519 (2015).
136. T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang, M. Zhu, “Human walking–driven wearable all–fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers.”
Nano Energy..
14, 226–226 (2015).
137. P. Bai, G. Zhu, Y. S. Zhou, S. Wang, J. Ma, G. Zhang, Z. L. Wang, “Dipole–moment– induced effect on contact electrification for triboelectric nanogenerators.”
Nano Res..
7, 990–990 (2014).
138. G. Romano, G. Mantini, A. Di Carlo, A. D’Amico, C. Falconi, Z. L. Wang, “Piezoelectric potential in vertically aligned nanowires for high output nanogenerators.”
Nanotechnology..
22, 465401(2011).
139. X. Li, Z.–H. Lin, G. Cheng, X. Wen, Y. Liu, S. Niu, Z. L. Wang, “3D fiber–based hybrid nanogenerator for energy harvesting and as a self–powered pressure sensor.”
ACS Nano..
8, 10674–10674 (2014).
140. C. Zhao, et al, “Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting.”
Nano Energy..
57, 440–440 (2019).
141. C. Chen, et al, “A fully encapsulated piezoelectric 一 triboelectric hybrid nanogenerator for energy harvesting from biomechanical and environmental sources.”
Express Polym. Lett..
13, 533–533 (2019).
142. Y. Zhu, B. Yang, J. Liu, X. Wang, X. Chen, C. Yang, “An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF.”
J. Microelectromech. S..
24, 513–513 (2015).
143. H. Li, L. Su, S. Kuang, Y. Fan, Y. Wu, Z. L. Wang, G. Zhu, “Multilayered flexible nanocomposite for hybrid nanogenerator enabled by conjunction of piezoelectricity and triboelectricity.”
Nano. Res..
10, 785–785 (2017).
144. G. Hassan, F. Khan, A. Hassan, S. Ali, J. Bae, C. H. Lee, “A flat–panel–shaped hybrid piezo/triboelectric nanogenerator for ambient energy harvesting.”
Nanotechnology..
28, 175402(2017).
145. C. Jirayupat, et al, “Piezoelectric–Induced Triboelectric Hybrid Nanogenerators Based on the ZnO Nanowire Layer Decorated on the Au/polydimethylsiloxane – Al Structure for Enhanced Triboelectric Performance.”
ACS Appl. Mater. Interfaces..
10, 6433–6433 (2018).
146. Y. Xie, S. Wang, L. Lin, Q. Jing, Z.–H. Lin, S. Niu, Z. Wu, Z. L. Wang, “Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy.”
ACS Nano..
7, 7119–7119 (2013).
147. L. Zhang, B. Zhang, J. Chen, L. Jin, W. Deng, J. Tang, H. Zhang, H. Pan, M. Zhu, W. Yang, “Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops.”
Adv. Mater..
28, 1650–1656 (2016).
148. T. Chen, Y. Xia, W. Liu, H. Liu, L. Sun, C. Lee, “A hybrid flapping-blade wind energy harvester based on vortex shedding effect.”
J. Microelectromech. S..
25, 845–847 (2016).
149. F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z. L. Wang, “Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films.”
Nano. Lett..
12, 3109–3114 (2012).
150. C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park, G.-T. Hwang, M. Byun, Z. L. Wang, Y. S. Jung, “Topographically-designed triboelectric nanogenerator via block copolymer self-assembly.”
Nano. Lett..
14, 7031–7038 (2014).
151. P. Bai, G. Zhu, Q. Jing, J. Yang, J. Chen, Y. Su, J. Ma, G. Zhang, Z. L. Wang, “Membrane-Based Self-Powered Triboelectric Sensors for Pressure Change Detection and Its Uses in Security Surveillance and Healthcare Monitoring.”
Adv. Func. Mater..
24, 5807–5813 (2014).
152. W. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. Su, Q. Jing, X. Cao, Z. L. Wang, “Harvesting energy from the natural vibration of human walking.”
ACS Nano..
7, 11317–11324 (2013).
153. X. Yang, W. A. Daoud, “Synergetic effects in composite-based flexible hybrid mechanical energy harvesting generator.”
J. Mater. Chem. A..
5, 9113–9121 (2017).
154. Y. Qian, D.J. Kang, “Poly(dimethylsiloxane)/ZnO nanoflakes/three-dimensional graphene heterostructures for high-performance flexible energy harvesters with simultaneous piezoelectric triboelectric generation.”
ACS Appl. Mater. Interfaces.
10, 32281–32288 (2018).
155. W. He, Y. Qian, B. S. Lee, F. Zhang, A. Rasheed, J. E. Jung, D. J. Kang, “Ultrahigh Output Piezoelectric and Triboelectric Hybrid Nanogenerators Based on ZnO Nanoflakes/Polydimethylsiloxane Composite Films.”
ACS Appl. Mater. Interfaces 2018.
10, 44415–44420 (2018).