1.A. Afif, N. Radenahmad, Q. Cheok, S. Shams, J.H. Kim, A.K. Azad, “Ammonia-fed fuel cells: A comprehensive review,.”
Renew. Sustain. Energy Rev.,.
60, 822–835 (2016).
2.H. Lund, “Renewable energy strategies for sustainable development,.”
Energy,.
32, 912–919 (2007).
3.O. Siddiqui, I. Dincer, “A review and comparative assessment of direct ammonia fuel cells,.”
Therm. Sci. Eng. Prog.,.
5, 568–578 (2018).
4.N.Q. Minh, “Ceramic fuel cells,.”
J. Am. Ceram. Soc.,.
76, 563–588 (1993).
5.H. Lee, Y. Woo, M.J. Lee, “The needs for R&D of ammonia combustion technology for carbon neutrality - Part II R&D trends and technical feasibility analysis(in Korean),.”
J. Korean Soc. Combust..
26(1): 84–106 (2021).
6.I. Dincer, “Technical, environmental and exergetic aspects of hydrogen energy systems,.”
Int. J. Hydrogen Energy,.
27, 265–285 (2002).
7.I. Dincer, “Environmental and sustainability aspects of hydrogen and fuel cell systems,.”
Int. J. Energy Res.,.
31, 29–55 (2007).
8.O. Siddiqui, I. Dincer, “Development of a new ammonia based energy storage option for grid balancing,.”
Energy Storage,.
2(4): 1–13 (2020).
9.G.W. Crabtree, M.S. Dresselhaus, “The hydrogen fuel alternative,.”
MRS Bull.,.
33, 421–428 (2008).
10.S.B. Walker, M. Fowler, L. Ahmadi, “Comparative life cycle assessment of power-to-gas generation of hydrogen with a dynamic emissions factor for fuel cell vehicles,.”
J. Energy Storage,.
4, 62–73 (2015).
11.S. Uhm, M. Seo, J. Lee, “Review: Competitiveness of formic acid fuel cells: In comparison with methanol(in Korean),.”
J. Korean Ind. Eng. Chem.,.
27, 123–127 (2016).
12.M.C.J. Bradford, P.E. Fanning, M.A. Vannice, “Kinetics of NH3 Decomposition over Well Dispersed Ru,.”
J. Catal.,.
172, 479–484 (1997).
13.D.G. L€offler, L.D. Schmidt, “Kinetics of NH3 decomposition on polycrystalline Pt,.” J. Catal.,. 41, 440–454 (1976).
14.A. Alera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, “Ammonia for power,.”
Prog. Energy Combust. Sci.,.
69, 63–102 (2018).
15.R. Lan, S. Tao, “Ammonia as a suitable fuel for fuel cells,.”
Front. Energy Res.,.
2, 1–4 (2014).
16.M. Xue, Q. Wang, B.-L. Lin, K. Tsunemi, “Assessment of ammonia as an energy carrier from the perspective of carbon and nitrogen footprints,.”
ACS Sustain. Chem. Eng.,.
7, 12494–12500 (2019).
17.W.C. Tan, H. Iwai, M. Kishimoto, G. Brus, J.S. Szmyd, H. Yoshida, “Numerical analysis on effect of aspect ratio of planar solid oxide fuel cell fueled with decomposed ammonia.”
J. Power Sources.
384, 367–378 (2018).
18.M.F. Ezzat, I. Dincer, “Comparative assessments of two integrated systems with/without fuel cells utilizing liquefied ammonia as a fuel for vehicular applications,.”
Int. J. Hydro. Energy,.
43, 4597–4608 (2018).
19.M. Kishimoto, H. Muroyama, S. Suzuki, M. Saito, T. Koide, Y. Takahashi, T. Horiuchi, H. Yamasaki, S. Matsumoto, H. Kubo, N. Takahashi, A. Okabe, S. Ueguchi, M. Jun, A. Tateno, T. Matsuo, T. Matsui, H. Iwai, H. Yoshida, K. Eguchi, “Development of 1 kW-class ammonia fueled solid oxide fuel cell stack,.”
Fuel Cells,.
20, 80–88 (2020).
20.T. Okanishi, K. Okura, A. Srifa, H. Muroyama, T. Matsui, M. Kishimoto, M. Saito, H. Iwai, H. Yoshida, M. Saito, T. Koide, H. Iwai, S. Suzuki, Y. Takahashi, T. Horiuchi, H. Yamasaki, S. Matsumoto, S. Yumoto, H. Kubo, J. Kawahara, A. Okabe, Y. Kikkawa, T. Isomura, K. Eguchi, “Comparative study of ammonia-fueled solid oxide fuel cell systems,.”
Fuel Cells,.
17, 383–390 (2017).
21.G. Jeerh, M. Zhang, S. Tao, “Recent progress in ammonia fuel cells and their potential applications,.”
J. Mater. Chem. A,.
9, 727–752 (2021).
22.D. Jeong, G. Kim, “Solid oxide fuel cell and application of proton conducting ceramics(in Korean),.”
Ceramist,.
21(4): 366–377 (2018).
23.Z. Wan, Y. Tao, J. Shao, Y. Zhang, H. You, “Ammonia as an effective hydrogen carrier and a clean fuel for solid oxide fuel cells,.”
Energy Convers. Manag.,.
228, 113729(2021).
24.S.P.S. Shaikh, A. Muchtar, M.R. Somalu, “A review on the selection of anode materials for solid-oxide fuel cells,.”
Renew. Sust. Energ. Rev.,.
51, 1–8 (2015).
25.A.F.S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells,.”
J. Power Sources,.
305, 72–79 (2016).
26.J.C. Ganley, F.S. Thomas, E.G. Seebauer, R.I. Masel, “A priori catalytic activity correlations: The difficult case of hydrogen production from ammonia,.”
Catal. Letters,.
96, 117–122 (2004).
27.J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “A stability study of Ni/Yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells,.”
ACS Appl. Mater. Interfaces,.
7, 28701–28707 (2015).
28.J. Zhang, H. Xu, W. Li, “Kinetic study of NH3 decomposition over Ni nanoparticles: The role of La promoter, structure sensitivity and compensation effect,.”
Appl. Catal. A: Gen.,.
296, 257–267 (2005).
29.A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Electrochemical and catalytic behaviors of Ni-YSZ anode for the direct utilization of ammonia fuel in solid oxide fuel cells.”
J. Electroehcm. Soc..
162(10): F1268–F1274 (2015).
30.Y. Wang, J. Yang, J. Wnag, W. Guan, B. Chi, L. Jia, J. Chen, H. Muroyama, To. Matsui, K. Eguchi, “Low-temperature ammonia decomposition catalysts for direct ammonia solid oxide fuel cells,.”
J. Electrochem. Soc.,.
167, 064501(2020).
31.G. Cinti, G. Discepoli, E. Sisani, U. Desideri, “SOFC operating with ammonia: Stack test and system analysis,.”
Int. J. Hydro. Energy,.
41(31): 13583–13590 (2016).
32.B. Stoeckl, V. Subotic, M. Preininger, M. Schwaiger, N. Evic, H. Schroettner, C. Hochenauer, “Characterization and performance evaluation of ammonia as fuel for solid oxide fuel cells with Ni/YSZ anodes,.”
Electrochim. Acta.
298, 874–883 (2019).
33.A. Hagen, H. Langnickel, X. Sun, “Operation of solid oxide fuel cells with alternative hydrogen carriers,.”
Int. J. Hydro. Energy,.
44, 18382–183922 (2019).
34.S.S. Shy, S.C. Hsieh, H.Y. Chang, “A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements,.”
J. Power Sources,.
396, 80–87 (2018).
35.B.C. Gates, “Supported metal-clusters-synthesis, structure, and catalysis,.”
Chem. Rev.,.
95, 511–522 (1995).
36.A.Y. Stakheev, L.M. Kustov, “Effects of the support on the morphology and electronic properties of supported metal clusters: Modern concepts and progress,.”
Appl. Catal. A: Gen.,.
188(1999): 3–35 (1990).
37.A.K. Hill, L. Torrente-Murciano, “Low temperature H2 production from ammonia using ruthenium-based catalysts: Synergetic effect of promoter and support,.”
Appl. Catal. B,.
172-173(1): 29–135 (2015).
38.A.K. Hill, L. Torrente-Murciano, “In-situ H2 production via low temperature decomposition of ammonia: Insights into the role of cesium as a promoter,.”
Int. J. Hydro. Energy,.
39, 7646–7654 (2014).
39.S.F. Yin, B.Q. Xu, X.P. Zhou, C.T. Au, “A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications,.”
Appl. Catal. A: Gen.,.
277, 1–9 (2004).
40.G. Meng, C. Jiang, J. Ma, Q. Ma, X. Liu, “Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen,.”
J. Power Sources,.
173, 189–193 (2007).
41.W. Raróg-Pilecka, E. Miśkiewicz, D. Szmigiel, Z. Kowalczyk, “Structure sensitivity of ammonia synthesis over promoted ruthenium catalysts supported on graphitised carbon,.”
J. Catal.,.
231, 11–19 (2005).
42.W. Zheng, J. Zhang, H. Xu, W. Li, “NH3 decomposition kinetics on supported Ru clusters: Morphology and particle size effect,.”
Catal. Letters,.
119, 311–318 (2007).
43.A.M. Karim, V. Prasad, G. Mpourmpakis, W.W. Lonergan, A.I. Frenkel, J.G. Chen, D.G. Vlachos, “Correlating particle size and shape of supported Ru/γ-Al2 O3 catalysts with NH3 decomposition activity,.”
J. Am. Chem. Soc.,.
131, 12230–12239 (2009).
44.X.-K. Li, W.-J. Ji, J. Zhao, S.-J. Wang, C.-T. Au, “Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15,.”
J. Catal.,.
236, 181–189 (2005).
45.J. Zhang, H. Xu, X. Jin, Q. Ge, W. Li, “Characterizations and activities of the nanosized Ni/Al2 O3 and Ni/La–Al2 O3 catalysts for NH3 decomposition,.” Appl. Catal. A: Gen.,. 290, 87–96 (2005).
46.H. Liu, H. Wang, J. Shen, Y. Sun, Z. Liu, “Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing CO x-free hydrogen from ammonia,.”
Appl. Catal. A: Gen.,.
337, 138–147 (2008).
47.J.H. Kim, J.K. Kim, W.C. Jung, “Development and application of ex-solution nanocatalyst(in Korean),.”
Ceramist,.
23(2): 200–210 (2020).
48.R. Huang, H.J. Kim, J.W. Han, “A review of smart exsolution catalysts for the application of gas phase reactions(in Korean),.”
Ceramist,.
23(2): 211–230 (2020).
49.N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, “Progress in material selection for solid oxide fuel cell technology: A review.”
Prog. Mater. Sci..
72, 141–337 (2015).
50.A.-M. Alexander, J.S.J. Hargreaves, C. Mitchell, “The reduction of various nitrides under hydrogen: Ni3 N, Cu3 N, Zn3 N2 and Ta3 N5,.” Top. Catal.. 55(14-15): 1046–1053 (2012).
51.M. Bianco, S. Poitel, J.E. Hong, S. Yang, Z.J. Wang, M. Willinger, R. Steinberger-Wilckens, J. Van herle, “Corrosion behaviour of nitrided ferritic stainless steels for use in solid oxide fuel cell devices,.”
Corros. Sci.,.
165, 108414(2020).
52.R.J. Hodges, “Intergranular corrosion in high purity ferritic stainless steels: Effect of cooling rate and alloy composition,.”
Corrosion,.
27(3): 119–127 (1971).
53.B. Stoeckl, M. Preininger, V. Subotić, S. Megel, C. Folgner, C. Hochenauer, “Towards a wastewater energy recovery system: The utilization of humidified ammonia by a solid oxide fuel cell stack,.”
J. Power Sources,.
450, 227608(2020).
54.J. Staniforth, R.M. Ormerod, “Clean destruction of waste ammonia with consummate production of electircal power within a solid oxide fuel cell system,.”
Green Chem.,.
5, 606–609 (2003).