1. W. Ko, M.-K. Cho, J. Kang, H. Park, J. Ahn, Y. Lee, S. Lee, S. Lee, K. Heo, J. Hong, J.-K. Yoo, J. Kim, “Exceptionally increased reversible capacity of O3-type NaCrO2 cathode by preventing irreversible phase transition.”
Energy Storage Mater..
46, 289–299 (2022).
2. M. Avdeev, Z. Mohamed, C. D. Ling, J. Lu, M. Tamaru, A. Yamada, P. Barpanda, “Magnetic Structures of NaFePO4 Maricite and Triphylite Polymorphs for Sodium-Ion Batteries.”
Inorg. Chem..
52(15): 8685–8693 (2013).
3. W. Ko, J.-K. Yoo, H. Park, Y. Lee, I. Kang, J. Kang, J. H. Jo, J. U. Choi, J. Hong, S.-T. Myung, J. Kim, “Exceptionally high-energy tunnel-type V1.5 Cr0.5 O4.5 H nanocomposite as a novel cathode for Na-ion batteries.”
Nano Energy.
77, 105175(2020).
4. R. A. Shakoor, D. H. Seo, H. Kim, Y. U. Park, J. Kim, S. W. Kim, H. Gwon, S. Lee, K. Kang, “A combined first principles and experimental study on Na3 V2(PO4)2 F3 for rechargeable Na batteries.” J. Mater. Chem.. 22(38): 20535–20541 (2012).
5. J. Kim, H. Kim, S. Lee, “High Power Cathode Material Na4 VO(PO4)2 with Open Framework for Na Ion Batteries.”
Chem. Mater..
29(8): 3363–3366 (2017).
6. J. Kim, I. Park, H. Kim, K.-Y. Park, Y.-U. Park, K. Kang, “Tailoring a New 4V-Class Cathode Material for Na-Ion Batteries.”
Adv. Energy Mater..
6(6): 1502147(2016).
7. J. H. Jo, J. U. Choi, M. K. Cho, Y. Aniskevich, H. Kim, G. Ragoisha, E. Streltsov, J. Kim, S. Myung, “Hollandite-Type VO1.75(OH)0.5: Effective Sodium Storage for High-Performance Sodium-Ion Batteries.”
Adv. Energy Mater..
9(22): 1900603(2019).
8. M. K. Cho, J. H. Jo, J. U. Choi, J. Kim, H. Yashiro, S. Yuan, L. Shi, Y. K. Sun, S. T. Myung, “Tunnel-type β-FeOOH cathode material for high rate sodium storage via a new conversion reaction.”
Nano Energy.
41, 687–696 (2017).
9. W. Ko, T. Park, H. Park, Y. Lee, K. E. Lee, J. Kim, “Na0.97 KFe(SO4)2: an iron-based sulfate cathode material with outstanding cyclability and power capability for Na-ion batteries.”
J. Mater. Chem. A.
6(35): 17095–17100 (2018).
10. Y. Liu, Z. Tai, Q. Zhang, H. Wang, W. K. Pang, H. K. Liu, K. Konstantinov, Z. Guo, “A new energy storage system: Rechargeable potassium-selenium battery.”
Nano Energy.
35, 36–43 (2017).
11. N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, “P2-type Na
x
[Fe1/2 Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries.”
Nat. Mater..
11(6): 512–517 (2012).
12. C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling, F. Ding, X. Qi, Y. Lu, X. Bai, B. Li, H. Li, A. Aspuru-Guzik, X. Huang, C. Delmas, M. Wagemaker, L. Chen, Y.-S. Hu, “Rational design of layered oxide materials for sodium-ion batteries.”
Science.
370(6517): 708–711 (2020).
13. C. Zhao, M. Avdeev, L. Chen, Y. S. Hu, “An O3-type Oxide with Low Sodium Content as the Phase-Transition-Free Anode for Sodium-Ion Batteries.”
Angew. Chem. Int. Ed..
57(24): 7056–7060 (2018).
14. C. Fouassier, C. Delmas, P. Hagenmuller, “Evolution structurale et proprietes physiques des phases A
x
MO2 (A = Na, K; M = Cr, Mn, Co) (x ≤ 1).”
Mater. Res. Bull..
10(6): 443–449 (1975).
15. Q. Wang, S. Mariyappan, G. Rousse, A. V. Morozov, B. Porcheron, R. Dedryvère, J. Wu, W. Yang, L. Zhang, M. Chakir, M. Avdeev, M. Deschamps, Y. S. Yu, J. Cabana, M. L. Doublet, A. M. Abakumov, J. M. Tarascon, “Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution.”
Nat. Mater..
20(3): 353–361 (2021).
16. P. GE, “Electrochemical intercalation of sodium in graphite.”
Solid State Ionics.
28-30, 1172–1175 (1988).
17. S. Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa, I. Nakai, “Study on the reversible electrode reaction of Na1-x
Ni0.5 Mn0.5 O2 for a rechargeable sodium-ion battery.”
Inorg. Chem..
51(11): 6211–6220 (2012).
18. J. Hwang, J. Kim, T. Yu, Y. Sun, “A New P2-Type Layered Oxide Cathode with Extremely High Energy Density for Sodium-Ion Batteries.”
Adv. Energy Mater..
9(15): 1803346(2019).
19. X. Cao, H. Li, Y. Qiao, X. Li, M. Jia, J. Cabana, H. Zhou, “Stabilizing Reversible Oxygen Redox Chemistry in Layered Oxides for Sodium-Ion Batteries.”
Adv. Energy Mater..
10(15): 1903785(2020).
20. W. Ko, H. Park, J. H. Jo, Y. Lee, J. Kang, Y. H. Jung, T.-Y. Jeon, S.-T. Myung, J. Kim, “Unveiling yavapaiite-type KFe(SO4)2 as a new Fe-based cathode with outstanding electrochemical performance for potassium-ion batteries.”
Nano Energy.
66, 104184(2019).
21. P. Barpanda, “Sulfate chemistry for high-voltage insertion materials: Synthetic, structural and electrochemical insights.”
Isr. J. Chem..
55(5): 537–557 (2015).
22. P. Barpanda, G. Oyama, S. Nishimura, S.-C. Chung, A. Yamada, “A 3.8-V earth-abundant sodium battery electrode.”
Nat. Commun..
5(1): 4358(2014).
23. M. Reynaud, M. Ati, B. C. Melot, M. T. Sougrati, G. Rousse, J. N. Chotard, J. M. Tarascon, “Li2 Fe(SO4)2 as a 3.83 V positive electrode material.” Electrochem. commun.. 21(1): 77–80 (2012).
24. S. C. Chung, J. Ming, L. Lander, J. Lu, A. Yamada, “Rhombohedral NASICON-type Na
x
Fe2(SO4)3 for sodium ion batteries: comparison with phosphate and alluaudite phases.”
J. Mater. Chem. A.
6(9): 3919–3925 (2018).
25. J. Zhou, D. Zhang, X. Zhang, H. Song, X. Chen, “Carbon-nanotube-encapsulated FeF2 nanorods for high-performance lithium-ion cathode materials.”
ACS Appl. Mater. Interfaces.
6(23): 21223–21229 (2014).
26. B. C. Melot, J.-M. Tarascon, “Design and Preparation of Materials for Advanced Electrochemical Storage.”
Acc. Chem. Res..
46(5): 1226–1238 (2013).
27. Y. Lee, J.-K. Yoo, Y. Oh, H. Park, W. Go, S.-T. Myung, J. Kim, “Unexpectedly high electrochemical performances of a monoclinic Na2.4 V 2(PO4)3/conductive polymer composite for Na-ion batteries.”
J. Mater. Chem. A.
6(36): 17571–17578 (2018).
28. R. Essehli, A. Alkhateeb, A. Mahmoud, F. Boschini, H. B. Yahia, R. Amin, I. Belharouak, “Optimization of the compositions of polyanionic sodium-ion battery cathode NaFe2-x
V
x
(PO4)(SO4)2
.”
J. Power Sources.
469, 228417(2020).
29. A. Yamada, S. C. Chung, K. Hinokuma, “Optimized LiFePO4 for Lithium Battery Cathodes.”
J. Electrochem. Soc..
148(3): A224(2001).
30. C. Berlanga, I. Monterrubio, M. Armand, T. Rojo, M. Galceran, M. Casas-Cabanas, “Cost-Effective Synthesis of Triphylite-NaFePO4 Cathode: A Zero-Waste Process.”
ACS Sustain. Chem. Eng..
8(2): 725–730 (2020).
31. H. Li, Z. Zhang, M. Xu, W. Bao, Y. Lai, K. Zhang, J. Li, “Triclinic Off-Stoichiometric Na3.12 Mn2.44(P2 O7)2/C Cathode Materials for High-Energy/Power Sodium-Ion Batteries.”
ACS Appl. Mater. Interfaces.
10(29): 24564–24572 (2018).
32. F. Sanz, C. Parada, U. Amador, M. A. Monge, C. Ruiz Valero, “Na4 Co3(PO4)2 P2 O7, a new sodium cobalt phosphate containing a three-dimensional system of large intersecting tunnels.” J. Solid State Chem.. 123(1): 129–139 (1996).
33. X. Pu, H. Wang, T. Yuan, S. Cao, S. Liu, L. Xu, H. Yang, X. Ai, Z. Chen, Y. Cao, “Na4 Fe3(PO4)2 P2 O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries.” Energy Storage Mater.. 22, 330–336 (2019).
34. P. Barpanda, L. Lander, S. I. Nishimura, A. Yamada, “Polyanionic Insertion Materials for Sodium-Ion Batteries.”
Adv. Energy Mater..
8(17): 1–26 (2018).
35. A. K. Padhi, V. Manivannan, J. B. Goodenough, “Tuning the Position of the Redox Couples in Materials with NASICON Structure by Anionic Substitution.”
J. Electrochem. Soc..
145(5): 1518–1520 (1998).
36. L. Sharma, S. P. Adiga, H. N. Alshareef, P. Barpanda, “Fluorophosphates: Next Generation Cathode Materials for Rechargeable Batteries.”
Adv. Energy Mater..
10(43): 2001449(2020).
37. M. Law, P. Balaya, “NaVPO4 F with high cycling stability as a promising cathode for sodium-ion bat-tery.”
Energy Storage Mater..
10, 102–113 (2018).
38. W. Ko, J.-K. Yoo, H. Park, Y. Lee, H. Kim, Y. Oh, S.-T. Myung, J. Kim, “Development of Na2 FePO4 F/Conducting-Polymer composite as an exceptionally high performance cathode material for Na-ion batteries.”
J. Power Sources.
432, 1–7 (2019).
39. R. Rajagopalan, Z. Wu, Y. Liu, S. Al-Rubaye, E. Wang, C. Wu, W. Xiang, B. Zhong, X. Guo, S. X. Dou, H. K. Liu, “A novel high voltage battery cathodes of Fe2+/Fe3+ sodium fluoro sulfate lined with carbon nanotubes for stable sodium batteries.”
J. Power Sources.
398, 175–182 (2018).
40. F. Ma, Q. Li, T. Wang, H. Zhang, G. Wu, “Energy storage materials derived from Prussian blue ana-logues.”
Sci. Bull..
62(5): 358–368 (2017).
41. C. D. Wessells, S. V. Peddada, R. A. Huggins, Y. Cui, “Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries.”
Nano Lett..
11(12): 5421–5425 (2011).
42. Y. J. Park, J. U. Choi, J. H. Jo, C. Jo, J. Kim, S. Myung, “A New Strategy to Build a High-Performance P′2-Type Cathode Material through Titanium Doping for Sodium-Ion Batteries.”
Adv. Funct. Mater..
29(28): 1901912(2019).
43. Y. You, X. L. Wu, Y. X. Yin, Y. G. Guo, “A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries.”
J. Mater. Chem. A.
1(45): 14061–14065 (2013).
44. Y. M. Kim, S. Choi, J. W. Choi, “Prussian Blue Analogues for Rechargeable Batteries.” J. Korean Electrochem. Soc.. 22(1): 13–21 (2019).
45. W. Wang, Y. Gang, Z. Hu, Z. Yan, W. Li, Y. Li, Q.-F. Gu, Z. Wang, S.-L. Chou, H.-K. Liu, S.-X. Dou, “Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries.”
Nat. Commun..
11(1): 980(2020).
46. J. Kim, H. Kim, K. Kang, “Conversion-Based Cathode Materials for Rechargeable Sodium Batteries.”
Adv. Energy Mater..
8(17): 1–20 (2018).
47. D. Gordon, Q. Huang, A. Magasinski, A. Ramanujapuram, N. Bensalah, G. Yushin, “Mixed Metal Difluorides as High Capacity Conversion-Type Cathodes: Impact of Composition on Stability and Performance.”
Adv. Energy Mater..
8(19): (2018).
48. P. G. Bruce, B. Scrosati, J. M. Tarascon, “Nanomaterials for rechargeable lithium batteries.”
Angew. Chem. Int. Ed..
47(16): 2930–2946 (2008).
49. Q. Huang, K. Turcheniuk, X. Ren, A. Magasinski, A. Y. Song, Y. Xiao, D. Kim, G. Yushin, “Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites.”
Nat. Mater..
18(12): 1343–1349 (2019).
50. G. Ali, S. H. Oh, S. Y. Kim, J. Y. Kim, B. W. Cho, K. Y. Chung, “An open-framework iron fluoride and reduced graphene oxide nanocomposite as a high-capacity cathode material for Na-ion batteries.”
J. Mater. Chem. A.
3(19): 10258–10266 (2015).
51. M. F. Parkinson, J. K. Ko, A. Halajko, S. Sanghvi, G. G. Amatucci, “Effect of vertically structured porosity on electrochemical performance of FeF2 films for lithium batteries.”
Electrochim. Acta.
125, 71–82 (2014).
52. M. Tang, Z. Zhang, Z. Wang, J. Liu, H. Yan, J. Peng, L. Xu, S. Guo, S. Ju, G. Chen, “Synthesis of FeF2/carbon composite nanoparticle by one-pot solid state reaction as cathode material for lithium-ion battery.”
J. Mater. Res. Technol..
7(1): 73–76 (2018).
53. L. Liu, H. Guo, M. Zhou, Q. Wei, Z. Yang, H. Shu, X. Yang, J. Tan, Z. Yan, X. Wang, “A comparison among FeF3·3H2 O, FeF3·0.33H2 O and FeF3 cathode materials for lithium ion batteries: Structural, electrochemical, and mechanism studies.” J. Power Sources. 238, 501–515 (2013).
54. J. K. Ko, K. M. Wiaderek, N. Pereira, T. L. Kinnibrugh, J. R. Kim, P. J. Chupas, K. W. Chapman, G. G. Amatucci, “Transport, phase reactions, and hysteresis of iron fluoride and oxyfluoride conversion electrode materials for lithium batteries.”
ACS Appl. Mater. Interfaces.
6(14): 10858–10869 (2014).
55. X. Fan, C. Luo, J. Lamb, Y. Zhu, K. Xu, C. Wang, “PEDOT Encapsulated FeOF Nanorod Cathodes for High Energy Lithium-Ion Batteries.”
Nano Lett..
15(11): 7650–7656 (2015).
56. L. Zhang, S. Ji, L. Yu, X. Xu, J. Liu, “Amorphous FeF3/C nanocomposite cathode derived from metal-organic frameworks for sodium ion batteries.”
RSC Adv..
7(39): 24004–24010 (2017).
57. A. Kitajou, Y. Ishado, T. Yamashita, H. Momida, T. Oguchi, S. Okada, “Cathode Properties of Perovskite-type NaMF3 (M= Fe, Mn, and Co) Prepared by Mechanical Ball Milling for Sodium-ion Battery.”
Electrochim. Acta.
245, 424–429 (2017).
58. T. B. Kim, J. W. Choi, H. S. Ryu, G. B. Cho, K. W. Kim, J. H. Ahn, K. K. Cho, H. J. Ahn, “Electrochemical properties of sodium/pyrite battery at room temperature.”
J. Power Sources.
174(2): 1275–1278 (2007).
59. Z. Zhao, Z. Hu, R. Jiao, Z. Tang, P. Dong, Y. Li, S. Li, H. Li, “Tailoring multi-layer architectured FeS2@ C hybrids for superior sodium-, potassium- and aluminum-ion storage.”
Energy Storage Mater..
22, 228–234 (2019).
60. T. Wang, H. Yang, B. Lu, “Ultra-stable sodium ion battery cathode realized by Cu7 S4 nanoparticles.”
J. Power Sources.
399, 105–114 (2018).
61. C. Liu, Z. G. Neale, G. Cao, “Understanding electrochemical potentials of cathode materials in rechargeable batteries.”
Mater. Today.
19(2): 109–123 (2016).
62. Y. Lee, J.-K. Yoo, J. H. Jo, H. Park, C.-H. Jo, W. Ko, H. Yashiro, S.-T. Myung, J. Kim, “The Conversion Chemistry for High-Energy Cathodes of Rechargeable Sodium Batteries.”
ACS Nano.
13(10): 11707–11716 (2019).
63. Y. Lee, C.-H. Jo, J.-K. Yoo, J. U. Choi, W. Ko, H. Park, J. H. Jo, D. O. Shin, S.-T. Myung, J. Kim, “New conversion chemistry of CuSO4 as ultra-high-energy cathode material for rechargeable sodium battery.”
Energy Storage Mater..
24, 458–466 (2020).